- Johnson, T.D., A.M. Barnett, E.E. DeMartini, L.L. Craft, R.F. Ambrose and L.J. Purcell. 1994. Fish production and habitat utilization on a southern California artificial reef. Bulletin of Marine Science 55: 709-723.
- Los Angeles County Sanitation Districts (LACSD). 1998. Annual Monitoring Report and Data Appendix for 1997. Submitted to the Los Angeles Regional Water Quality Control Board, June 30, 1998.
- Love, M. S., B. Axell, P. Morris, R. Collins and A. Brooks. 1987. Life history and fishery of the California scorpionfish, *Scorpaena guttata*, within the southern California bight. Fishery Bulletin 86: 99-115.
- Love, M.S., A. Brooks, D. Busatto, J. Stephens and P.A. Gregory. 1996. Aspects of the life histories of the kelp bass, *Paralabrax clathratus*, and barred sand bass, *P. nebulifer*, from the southern California Bight. Fishery Bulletin 94: 472-481.
- Palermo, M., P. Schroeder, Y. Rivera, C. Ruiz, D. Clarke, J. Gailani, J. Clausner, M.
 Hynes, T. Fredette, B. Tardy, L. Peyman-Dove and A. Risko. 1999. Options for In
 Situ Capping of Palos Verdes Shelf Contaminated Sediments. U.S. Army Corps of
 Engineers Waterways Experiment Station. Technical Report EL-99-2. March 1999.
- Patton, M.L., C.F. Valle and R.S. Grove. 1994. Effects of bottom relief and fish grazing on the density of the giant kelp, *Macrocystis*. Bulletin of Marine Science 55: 631-644.
- Pondella, D.J., II, and L.G. Allen. 1999. The Nearshore Fish Assemblage of Santa Catalina Island. In press, Proceedings of the Fifth California Islands Symposium.
- Pondella, D.J., II, P. Morris, J. Stephens, Jr. and N. Davis. 1996. Marine Biological Surveys of the Coastal Zone off the City of Rancho Palos Verdes. U.S. Army Corps of Engineers. 85 p.
- Pondella, D.J., II and J.S. Stephens. 1998. Habitat Valuation for Proposed Alternatives 1 and 2 of the Rancho Palos Verdes Feasibility Study, Rancho Palos Verdes, CA. U.S. Army Corps of Engineers. 14 p.
- Pondella, D.J., II, J.S. Stephens, Jr. and M.T. Craig. In review. Fish productivity of a temperate artificial reef based upon the density of embiotocids (Teleostei: Perciformes). Proceedings of the Seventh International Conference on Artificial Reefs and Related Aquatic Habitats, October 1999. ICES Journal of Marine Science.
- Quast, J.C. 1968. Estimates of the populations and the standing crop of fishes. *In*Utilization of kelp-bed resources in southern California (W. J. North and C. L. Hubbs eds.) The Resources Agency of California. Department of Fish and Game Fish Bulletin 139: 57-79.

- Southern California Bight Pilot Project Field Coordination Team. 1995. Field Operations Manual for Marine Water-Column, Benthic and Trawl Monitoring in Southern California. Available at http://www.sccwrp.org/tools/methods.htm.
- Stephens, Jr., J.S. and K. Zerba. 1981. Factors affecting fish diversity on a temperate reef. Env. Biol. Fish. 6: 111-121.
- Stephens, Jr., J.S., P.A. Morris, K.E. Zerba, and M. Love. 1984. Factors affecting fish diversity on a temperate reef: the fish assemblage of Palos Verdes Point, 1974-1981. Env. Biol. Fish. 11:259-275. Stull, J. K. and C-L Tang. 1996. Demersal fish trawls off Palos Verdes, Southern California, 1973-1993. CalCOFI Reports 37: 211-240.
- Young, P.H. 1963. The kelp bass (*Paralabrax clathratus*) and its fishery, 1947-1958. The Resources Agency of California. Department of Fish and Game Fish Bulletin 122: 1-67.

9.0 Appendix 1. Resource Equivalency Analysis

Table 19. Damages calculated from inputs given in Table 16.

		Total An	nual Biomass In	jury		
	Discount	FDA Standard	FDA Standard		California Standard 0.1ppm	
	Factor	Injury	Discounted	Injury	Discounted	
1980	1.81	-	12	-		
1981	1.75	24,420	42,821	-		
1982	1.70	24,420	41,573	-	40	
1983	1.65	24,420	40,363	-		
1984	1.60	24,420	39,187			
1985	1.56	24,420	38,046			
1986	1.51	24,420	36,937	-		
1987	1.47	13,981	20,532	-		
1988	1.43	13,981	19,934			
1989	1.38	13,981	19,353	- 3		
1990	1.34	13,981	18,789	-		
1991	1.30	13,981	18,242	-		
1992	1.27			47,414	60,063	
1993	1.23		-	47,414	58,313	
1994	1.19			47,414	56,615	
1995	1.16		- T	47,414	54,966	
1996	1.13	-		47,414	53,365	
1997	1.09	-		47,414	51,811	
1998	1.06	-		47,414	50,302	
1999	1.03	16	1.	47,414	48,836	
2000	1.00	-	-	47,414	47,414	
2001	0.97	-	-	47,414	46,033	
2002	0.94	-		47,414	44,692	
2003	0.92	-	-	47,414	43,391	
2004	0.89	1	-	47,414	42,127	
2005	0.86	-	-	47,414	40,900	

Table 20. Reef benefits calculated from inputs given in Table 16.

	D:	Reef One	
	Discount		
	Factor	Biomass	Discounted
2000	1.00	-	-
2001	0.97	-	-
2002	0.94	-	
2003	0.92	-	-
2004	0.89	-	-
2005	0.86	-	-
2006	0.84	9,938	8,322
2007	0.81	19,875	16,160
2008	0.79	29,813	23,534
2009	0.77	39,750	30,465
2010	0.74	39,750	29,578
2011	0.72	39,750	28,716
2012	0.70	39,750	27,880
2013	0.68	39,750	27,068
2014	0.66	39,750	26,279
2015	0.64	39,750	25,514
2016	0.62	39,750	24,771
2017	0.61	39,750	24,049
2018	0.59	39,750	23,349
2019	0.57	39,750	22,669
2020	0.55	39,750	22,009
2021	0.54	39,750	21,368
2022	0.52	39,750	20,745
2023	0.51	39,750	20,141
2024	0.49	39,750	19,554
2025	0.48	39,750	18,985
2026	0.46	39,750	18,432
2027	0.45	39,750	17,895
2028	0.44	39,750	17,374
2029	0.42	39,750	16,868
2030	0.41	39,750	16,376
2031	0.40	39,750	15,899
2032	0.39	39,750	15,436
2033	0.38	39,750	14,987
2034	0.37	39,750	14,550
2035	0.36	39,750	14,126
2036	0.35	39,750	13,715
2037	0.33	39,750	13,316
2038	0.33	39,750	12,928
2039	0.32	39,750	12,551
2040	0.31	39,750	12,186
2041	0.30	39,750	11,831
2042	0.29	39,750	11,486
2043	0.28	39,750	11,152
2044	0.27	39,750	10,827
2045	0.26	39,750	10,511
2046	0.26	39,750	10,205
2047	0.25	39,750	9,908
204/	0.23	33,130	7,700

2049	0.24	20.750	0.610
2048	0.24		
2049	0.23	39,750	
2050		39,750	
2051	0.22	39,750	
2052	0.22	39,750	8,547
2053	0.21	39,750	
2054	0.20	39,750	
2055	0.20	39,750	7,821
2056	0.19	39,750	7,594
2057	0.19	39,750	7,373
2058	0.18	39,750	7,158
2059	0.17	39,750	6,949
2060	0.17	39,750	6,747
2061	0.16	39,750	6,550
2062	0.16	39,750	6,360
2063	0.16	39,750	6,174
2064	0.15	39,750	5,995
2065	0.15	39,750	5,820
2066	0.14	39,750	5,650
2067	0.14	39,750	5,486
2068	0.13	39,750	5,326
2069	0.13	39,750	5,171
2070	0.13	39,750	5,020
2071	0.12	39,750	4,874
2072	0.12	39,750	4,732
2073	0.12	39,750	4,594
2074	0.11	39,750	4,460
2075	0.11	39,750	4,331
2076	0.11	39,750	4,204
2077	0.10	39,750	4,082
2078	0.10	39,750	3,963
2079	0.10	39,750	3,848
2080	0.09	39,750	3,736
2081	0.09	39,750	3,627
2082	0.09	39,750	3,521
2083	0.09	39,750	3,419
2084	0.08	39,750	3,319
2085	0.08	39,750	3,222
2086	0.08	39,750	3,128
2087	0.08	39,750	3,037
2088	0.07	39,750	2,949
2089	0.07	39,750	2,863
2090	0.07	39,750	2,780
2091	0.07	39,750	2,699
2092	0.07	39,750	2,620
2093	0.06	39,750	2,544
2094	0.06	39,750	2,470
2095	0.06	39,750	2,398
2096	0.06	39,750	2,328
2097	0.06	39,750	2,260
2098	0.06	39,750	2,194
2099	0.05	39,750	2,130
2100	0.05	39,750	2,068

2101	0.05	39,750	2,008
2102	0.05	39,750	1,950
2103	0.05	39,750	1,893
2104	0.05	39,750	1,838
2105	0.04	39,750	1,784
Total	2016		1,034,513

10.0 Appendix 2. Total DDT Levels in Fish from the Palos Verdes Shelf:
Proportions Exceeding the FDA Action Level and the California State Trigger Level.

Total DDT Levels in Fish from the Palos Verdes Shelf: Proportions Exceeding the FDA Action Level and the California State Trigger Level

Prepared for:
Industrial Economics

Job Number: INDsou:114

April 2000

TABLE OF CONTENTS

1.	INTRODUCTION	1
2	DATA SOURCES	1
3.	METHOD OF ANALYSIS	3
	3.1 Spatial Segmentation	4
	RESULTS AND DISCUSSION	_
RE	EFERENCES	9
ΑU	JTHOR	10

TABLES

Table

- Table 1. Data Sources.
- Table 2. Periods of Applicability and Years of Data Availability for Each Critical Concentration and Species.
- Table 3. Exceedance of Critical Total DDT concentrations by Fish from the Palos Verdes Shelf.

FIGURES

Figure

- Figure 1. Map showing boundaries of spatial segments.
- Figure 2. Total DDT concentrations in white croaker muscle. Temporal patterns by segment. Wet weight basis.
- Figure 3. Total DDT concentrations in white croaker muscle. Temporal patterns by segment. Lipid basis.
- Figure 4. Total DDT concentrations in Dover sole muscle. Temporal patterns by segment. Wet weight basis.
- Figure 5 Total DDT concentrations in Dover sole muscle. Temporal patterns by segment. Lipid basis.
- Figure 6. Total DDT concentrations in kelp bass muscle. Temporal patterns by segment. Wet weight basis.
- Figure 7 Total DDT concentrations in kelp bass muscle. Temporal patterns by segment. Lipid basis.